Topic: Decorrelating and then Whitening data

Extra notes for MAS622J/1.126J by Rosalind W. Picard

1. Let \mathbf{x} be a vector of zero-mean data. Form its covariance matrix,

$$\mathbf{\Sigma} = E(\mathbf{x}\mathbf{x}^T)$$

If the data points in \mathbf{x} are correlated, then their covariance, $\boldsymbol{\Sigma}$, will NOT be a diagonal matrix.

2. In order to decorrelate the data, we need to transform it so that the transformed data will have a diagonal covariance matrix. This transform can be found by solving the eigenvalue problem. We find the eigenvectors and associated eigenvalues of Σ by solving

$$\Sigma \Phi = \Phi \Lambda$$

 Λ is a diagonal matrix having the eigenvalues as its diagonal elements.

The matrix Φ thus diagonalizes the covariance matrix of **x**. The columns of Φ are the eigenvectors of the covariance matrix.

We can also write the diagonalized covariance as:

$$\mathbf{\Phi}^T \mathbf{\Sigma} \mathbf{\Phi} = \mathbf{\Lambda} \tag{1}$$

If we wish to apply this diagonalizing transform to a single vector of data we just form:

$$\mathbf{y} = \mathbf{\Phi}^T \mathbf{x} \tag{2}$$

Thus, the data \mathbf{y} has been decorrelated: its covariance, $E[\mathbf{y}\mathbf{y}^T]$ is now a diagonal matrix, $\mathbf{\Lambda}$.

3. The diagonal elements (eigenvalues) in Λ may be the same or different. If we make them all the same, then this is called *whitening* the data. Since each eigenvalue determines the length of its associated eigenvector, the covariance will correspond to an ellipse when the data is not whitened, and to a sphere (having all dimensions the same length, or uniform) when the data is whitened. Whitening is easy:

$$\mathbf{\Lambda}^{-1/2}\mathbf{\Lambda}\mathbf{\Lambda}^{-1/2} = \mathbf{I}$$

Equivalently, substituting in (1), we write:

$$\mathbf{\Lambda}^{-1/2} \mathbf{\Phi}^T \mathbf{\Sigma} \mathbf{\Phi} \mathbf{\Lambda}^{-1/2} = \mathbf{I}$$

Thus, to apply this whitening transform to \mathbf{y} we simply multiply it by this scale factor, obtaining the whitened data \mathbf{w} :

$$\mathbf{w} = \mathbf{\Lambda}^{-1/2} \mathbf{y} = \mathbf{\Lambda}^{-1/2} \mathbf{\Phi}^T \mathbf{x}$$
(3)

Now the covariance of \mathbf{w} is not only diagonal, but also uniform (white), since the covariance of \mathbf{w} , $\mathbf{E}(\mathbf{w}\mathbf{w}^T) = \mathbf{I}$:

$$E(\mathbf{\Lambda}^{-1/2}\mathbf{\Phi}^T\mathbf{x}\mathbf{x}^T\mathbf{\Phi}\mathbf{\Lambda}^{-1/2}) = \mathbf{I}$$

In DHS, the diagonalizing transform applied to \mathbf{x} is denoted \mathbf{A} and the whitening transform is represented by $\mathbf{A}_{\mathbf{w}}$. These map onto the notation above as follows:

$$\mathbf{y} = A^T \mathbf{x}, \ A = \mathbf{\Phi}$$

$$\mathbf{w} = A_w^T \mathbf{x}, \ A_w = \mathbf{\Phi} \mathbf{\Lambda}^{-1/2}$$